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Abstract. Current search engines rely on centralized page ranking algorithms
which compute page rank values as single (global) values for each Web page.
Recent work on topic-sensitive PageRank [6] and personalized PageRank [8] has
explored how to extend PageRank values with personalization aspects. To achieve
personalization, these algorithms need specific input: [8] for example needs a set
of personalized hub pages with high PageRank to drive the computation. In this
paper we show how to automate this hub selection process and build upon the lat-
ter algorithm to implement a platform for personalized ranking. We start from the
set of bookmarks collected by a user and extend it to contain a set of hubs with
high PageRankrelated to them. To get additional input about the user, we im-
plemented a proxy server which tracks and analyzes user’s surfing behavior and
outputs a set of pages preferred by the user. This set is then enrichened using our
HubFinder algorithm, which finds related pages, and used as extended input for
the [8] algorithm. All algorithms are integrated into a prototype of a personalized
Web search system, for which we present a first evaluation.

1 Introduction

Using the link structure of the World Wide Web to rank pages in search engines has
been investigated heavily in recent years. The success of the Google Search Engine [5,
3] has inspired much of this work, but has lead also to the realization that further im-
provements are needed. The amount and diversity of Web pages (Google now indicates
about 4.3 billion pages) lead researchers to explore faster and more personalized page
ranking algorithms, in order to address the fact that some topics are covered by only
a few thousand pages and some are covered by millions. For many topics, the exist-
ing PageRank algorithm is not sufficient to filter the results of a search engine query.
Take for example the well-known query with the word “Java” which should return top
results for either the programming language or the island in the Pacific: Google defini-
tively prefers the programming language because there are many more important pages
on it than on the island. Moreover, most of the existing search engines focus only on
answering user queries, although personalization will be more and more important as
the amount of information available in the Web increases. Recently, several approaches
to solve such problems have been investigated, building upon content analysis or on
algorithms which build page ranks personalized for users or classes of users. The most
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ambitious investigation so far for personalized ranking has been [8], which we have
used as starting point for our work.

This paper describes the design and implementation ofPROS, a personalized rank-
ing platform which uses the algorithm presented in [8] (called the“PPR algorithm”
– Personalized PageRank – hereafter) plus new algorithms for automated input gen-
eration to drive and optimize this algorithm. Our platform is based on HubFinder, an
algorithm we developed to find related pages (or hubs, depending on the user) and on a
proxy server meant to (temporarily) capture user’s surfing behavior. Hubs in this con-
text are Web pages pointing to many other important pages (i.e. with a high rank). Their
counterpart are authorities, which are high quality pages pointed by many hubs.

In the original [8] paper, PPR user profiles, used as input for building personalized
ranks, are gained by presenting users a set of pages/hubs with high PageRank (as com-
puted using [14]) from which they can choose a set of preferred pages. The disadvantage
of this procedure is that this operation takes time and might often be superfluous as most
Internet users have some bookmarks of their own already, which could be used to de-
rive their user profile. We therefore wanted to build such a preference setautomatically,
using user’s bookmarks and/or most surfed pages (i.e. pages read for a longer period of
time, or voted for by a user). This resulting set can then be extended using an algorithm
which finds high quality related pages.

The contributions of this paper are: (1) a platform which automates the computation
of personalized ranks by generating more comprehensive input data with less user ef-
fort, and which consists of two modules: one based on user’s bookmarks and the other
based on the output of a specialized proxy server which computes the pages most likely
to be considered interesting by the user; (2) both modules use HubFinder – a fast and
flexible algorithm for finding related pages using the link structure of the World Wide
Web, and HubRank – a modified PageRank algorithm which combines the authority
value with the hub value of Web pages, in order to further extend these sets of Web
pages into the input data needed by the PPR algorithm; and (3) first experimental re-
sults from integrating PROS into a personalized Web search system.

We will start by covering the algorithms related to or directly used as background of
our research in section 2. Section 3 discusses our PROS platform, which automates the
computation of personalized ranks. First experimental results are presented in section 4.
Finally, section 5 describes other related Web search systems, and section 6 concludes
with discussion of further work.

2 Background

2.1 Web Graph

In the paper we will use a notation similar to [8].G = (V,E) represents theWeb graph,
whereV is the set of all Web pages andE is the set of directed edges< p, q >. E
contains an edge< p, q > iff a pagep links to pageq. I(p) denotes the set of in-
neighbors (pages pointing top) andO(p) the set of out-neighbors (pages pointed to
by p). For each in-neighbor we useIi(p) (1 ≤ i ≤ |I(p|), the same applies to each
out-neighbor. We referv(p) to denote thep-thcomponent ofv. We will typeset vectors
in boldface and scalars (e.g.,v(p)) in normal font.
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Let A be the adjacency matrix corresponding to the Web graphG with Aij = 1
|O(j)|

if pagej links to pagei andAij = 0 otherwise.

2.2 PageRank

PageRank is an algorithm for computing a Web page score based on the graph inferred
from the link structure of the Web. The motivating idea for PageRank is that pages
with many backlinks are more important than pages with only a few backlinks. As this
simple definition would allow a malicious user to easily increase the ”importance” of
his page simply by creating lots of pages pointing to it, the PageRank algorithm uses
the following recursive description: “a page has high rank if the sum of the ranks of its
backlinks is high”. Stated another way, the vectorPR of page ranks is the eigenvector
of A corresponding to its dominant eigenvalue.

Given a Web pagep, the PageRank formula is:

PR(p) = (1− c)
∑

q∈Op

PR(q)
‖O(q)‖

+ cE(p) (1)

The dumping factorc < 1 (usually 0.15) is necessary to guarantee convergence (A
is not irreducible, i.e.G is not strongly connected) and to limit the effect of rank sinks
[2]. Intuitively, a random surfer will follow an outgoing link from the current page with
probability(1− c) and will get bored and select a different page with probabilityc.

2.3 Personalized Page Ranking

PageRank. Initial steps towards personalized page ranking are already described by
[14] who proposed a slight modification of the PageRank algorithm to redirect the ran-
dom surfer towards preferred pages using theE vector. Several distributions for this
vector have been proposed since.

Topic-sensitive PageRank. [6] builds a topic-oriented PageRank, starting by com-
puting off-line a set of 16 PageRank vectors based on the 16 main topics of the Open
Directory Project [13]. Then, the similarity between a user query and each of these
topics is computed, and the 16 vectors are combined using appropriate weights.

Personalized PageRank. Description. As the most recent investigation, [8] uses a
new approach: it focuses on user profiles. One Personalized PageRank Vector (PPV) is
computed for each user. The personalization aspect of this algorithm stems from aset of
hubs(H), each user having to select herpreferred pagesfrom it. PPVs can be expressed
as a linear combination of basis vectors (PPVs for preference vectors with a single non-
zero entry corresponding to each of the pages from P, the preference set), which could
be selected from the precomputed basis hub vectors, one for each page from H, the hub
set. To avoid the massive storage resources the basis hub vectors would use, they are
decomposed into partial vectors (which encode the part unique to each page, computed
at run-time) and the hub skeleton (which captures the interrelationships among hub
vectors, stored off-line).

Algorithm. In the first part of the paper, the authors present three different algorithms
for computing basis vectors: ”Basic Dynamic Programming”, ”Selective Expansion”
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and ”Repeated Squaring”. In the second part, specializations of these algorithms are
combined into a general algorithm for computing PPVs, as depicted below:
1. Compute one partial vector for each page in H using a specialization of the Selective

Expansion algorithm.
2. Compute the hubs skeleton using a specialization of the Repeated Squaring algo-

rithm and taking the intermediate results from step 1 as input.
3. Compute the PPV using the computed partial vectors and hubs skeleton, and the

preference vector.
For an in-depth view of this process, we refer the reader to [8].

3 PROS: A Personalized Ranking Platform

Introduction . As explained before, personalized rankings can improve current Web
search systems by adapting results to user preferences. The algorithm presented in [8]
is the most recent step in this direction. An issue left open in [8] is how a set of highly
rated hubs, needed as input for the adaptation process, is selected by the user. The
personalization (and therefore success) relies on the user’s ability to choose such high
quality hubs which match her preferences.

In this section, we describe how to exploit information collected from the user to de-
rive the highly rated hubs that represent the user profile. The computation is performed
automatically based on the followinginput:

– Most surfed pages.Pages visited by the user are tracked using a specialized proxy
we implemented. The proxy records information about the duration the user looked
at a page and how frequently she returned to it.

– User’s bookmarks.Additionally, we use the user’s bookmarks as an indication for
user preferences. Currently, bookmarks are directly provided by the user, but this
interaction could also be automated (e.g. using a browser plugin).
Architecture . The PROS platform consists of two main modules, which use the

two input sets described above. They use HubFinder and HubRank, two algorithms we
developed for finding related pages using the Web link structure and for ranking Web
pages, respectively (presented briefly later in this section and in more detail in [4]).

The first module consists of applying the following operations:
1. Get bookmarks from the user.
2. Add bookmarks to thepreference set.
3. Apply HubFinder, using user’s bookmarks as input and HubRank scores as trim-

ming criterion. HubRank is the best criterion in this situation, because the PPR al-
gorithm needs hubs with high PageRank as input and HubRank has been designed
as a biasing of PageRank towards hubs, as discussed later in this section.

4. Add the preference set and the output from the previous step to thehub set.
The second module is based on using a proxy server for a limited period of time in

order to capture user’s ”surfing behavior”. Its modus operandi is described below:
1. The user surfs the Web using a given proxy. The proxy will output the pages exam-

ined by the user for a certain period of time (there must be both a lower threshold
and an upper one to avoid the situation when the user leaves the browser open for
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a long period of time without using it), as well as those most frequently revisited.
The more time it is used, the better ranking accuracy will be aquired.

2. Add the user’s most surfed pages (as recorded by the proxy) to thepreference set.
3. Apply HubFinder with HubRank as criterion and a small radius and number of

output pages. We want the pages related to user’s bookmarks to be more important
than the pages related to his/her most surfed ones and using a smaller radius is a
way to achieve this.

4. Add user’s most surfed pages, as well as the pages related to them to thehub set.
Finally, the PPR algorithm is executed using the newly computed preference and

hub sets. The complete process is depicted in figure 1.

Fig. 1.Personalized Ranking Platform

HubFinder is an algorithm for finding hubs, related to an initial base set of Web
pages. We definerelatedsimilarly to [7], i.e. using only link information as input. Two
pages are related if one is accessible from the other via the link structure of the Web
graph (following either in-going or out-going links). We should also add that the dis-
tance (the number of links followed) between such two pages is usually less than 6
(according to our experiments, in cases where the distance is bigger the link informa-
tion becomes insufficient to say that pages are similar in context with a high enough
probability), and thus the related hubs are in the vicinity of the starting page. The max-
imum distance (notedσ and also called radius) is a parameter for HubFinder.

In order to get a good set of related pages we took into account the following as-
pects: the set has to be small, rich in relevant pages and it should contain many of the
strongest authorities. [10] extracts the top results of a query sent to a search engine and
builds a focused sub-graph of the WWW around them. It then extends this base set by
adding all pages pointed to and at mostd pages pointing to each page from it. This op-
eration is calledKleinberg extension. The author extends the initial set only once, but he
focused on computing Hub and Authority scores, whereas we were focusing on finding
related pages or hubs. Therefore we iteratively apply the Kleinberg extension several
times on the resulting set of each previous iteration in order to obtain more pages and
thus more representative results. As this scenario leads to very big output sets (up to
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500,000 pages), trimming is necessary after each intermediate step. The pseudo-code
of the resulted HubFinder algorithm is as follows:

Let Γ be the Base Set of pages whose related hubs we are looking for
Γ ← Apply the Kleinberg Extension onΓ once
Γ ′ ← Γ
For i = 1 to σ do:

Γ ′′ ← Apply the Kleinberg Extension onΓ ′ once
Trim Γ ′′ to contain onlyinterestingpages,not contained inΓ
Γ ← Γ + Γ ′′

Γ ′ ← Γ ′′

End For
Trim Γ to contain as many interesting pages as desired
ReturnΓ

Two aspects have to be considered: how many pages should we keep after each
iteration and which are theinteresting pages? Regarding the former one, we keep one
percent of the current set size, whereas the best criterion tackling the latter issue are
global rank scores (e.g. as computed with PageRank or a similar algorithm). [4] contains
an in-depth discussion of the algorithm, a formula on the exact number of pages to keep,
as well as a proposed extension based on text analysis.

HubRank. We started from the idea that a page pointing to a good hub is a candidate
for having a high hub rank as well. Often we encounter pages (perhaps good authorities)
with only a few out-going links, but towards very important hubs. We consider such
pages more important than the hubs themselves, because while a hub can cover lots of
topics, such a page will usually contain information about the content addressed by the
hubs it is pointing to, about the value of their content (e.g. author opinions), etc.

To compute these hub scores, we modified the PageRank personalization vector
to consider the out-degree of the pages. Intuitively, the random surfer prefers pages
with a big out-degree when it gets bored. This way, the global importance of the pages
will play an important role in defining general scores, as the random surfer will follow
the out-going links with a higher probability than the random ones, and on the other
hand, the out-degree of pages will always be considered. In PageRank, the vectorE is
a uniform distribution with 1

NP in each entry (whereNP is the total number of pages).
We set the value of each entryi of E to Ei = |O(i)|NP

|O| where|O| is the summation of
the out-going links over the whole Web graph. As PageRank focuses on authorities in
the first part of the formula, we focused on hubs in the second part.

Prototype. Current Web search systems apply only basic personalization techniques
(e.g. presenting a user interface in Spanish if the access is from a Spanish IP address).
However, this refers only to how the search engine interacts with the user, but it uses
the same ranking process no matter who submits the query. To exemplify this problem,
let us imagine that a user searches using the keyword ”architecture”. Output topics may
vary from computer architecture to building architecture or even something else. By
extracting user’s interests from her bookmarks (if she likes building architecture she
would have some bookmarks on it) and from her most visited pages (she would check
buiding architecture pages often), we can create a personalized view of the global ranks,
and thus provide tailored output for each user. A screenshot of our prototype can be seen
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in figure 2. As a comparison, we present the results obtained when ranking URLs with
the PageRank algorithm [14] on the left side, and with PROS on the right. Our tester
was interested in building architecture. While with PageRank only two output URLs
were relevant, all five generated by PROS were worth checking.

Fig. 2.Prototype of the PROS Web Search System

4 Experiments and Results

Input Data . We performed tests on several small Web crawls (3 to 40 thousand pages)
and on two bigger ones, one with one million and one with three million Web pages.
The results presented in this paper use the largest set. Furthermore, we ran PPR and
PROS using several data sets as input and several users, but selected only the most
representative experiments here because of space constraints.

Algorithm Preference Set Hub Set
PPR 30 user defined bookmarks. User’s bookmarks (30) plus top ranked

PageRank pages. Totally about 1200 pages.
PROS 30 user defined bookmarks plus 78

pages selected tracking user’s surfing
behavior (108 pages in total).

The preference set plus its related pages plus
top ranked PageRank pages. Totally about
1700 pages.

Table 1. Input Data for the PPR algorithm experiments

Our first experiment follows all guidelines of the original paper. It has 30 user book-
marks as preference set and a hub set mixing user’s bookmarks with top PageRank doc-
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uments. The second experiment uses the input we obtained with our ranking platform.
A tester surfed the Web for about two weeks using our proxy and we selected 78 pages
as her ”fingerprint”. These were merged with her 30 bookmarks (same as in the first
experiment) into thepreference set. Then, we applied HubFinder with HubRank as cri-
terion on both the set of bookmarks and the set of most surfed pages, obtaining about
900 pages from the former one and about 400 from the latter one (we used a radius
of 5 for the bookmarks and a radius of 2 for the most surfed pages). To these 1300
pages some top PageRank pages were added and the resulting set was used ashub set.
A description of the input data used can be found in table 1. Our tester was an archi-
tect, having traveling and software as other hobbies, and sports as a secondary interest.
Her bookmarks were distributed accordingly: 15 on architecture, 7 on traveling, 6 on
software and 2 on sports.

Results. To analyze the resulting ranks, we selected some general keywords (see
table 2) and performed Web searches, exactly as in a search engine. Results were sorted
with respect to their ranks, without considering term frequency of keywords in output
documents. The ranking algorithms used were PageRank, PPR, and PROS. Although
the first one does not involve any personalization, we decided to implement it too, as it
is the most popular algorithm and useful as background for our evaluation.

Query Keywords PageRank PPR PROS
Rel. Par. Rel.Irrel. Rel. Par. Rel.Irrel. Rel. Par. Rel.Irrel.

architecture 5 3 2 3 7 0 8 2 0
building 3 2 5 2 3 5 4 1 5

Paris 6 0 4 2 3 5 6 2 2
park 6 0 4 8 0 2 10 0 0
surf 3 0 7 4 2 4 7 2 1
Total 23 5 22 19 15 16 35 7 8

Table 2.Relevancy value for different search keywords and different algorithms

The top 10 URLs obtained by ranking the search results with each algorithm were
classified into the following categories: (a) Relevant (denoted by ”Rel.” in table 2) if the
URL was on one of the four topics of interest of our tester; (b) Partially Relevant (noted
as ”Par.Rel.”) if it was on a topic related to one of the above-mentioned four ones (e.g. an
URL on hardware architectures was considered partially related to computer software);
or (c) Irrelevant (”Irrel.” in table 2) if it was not in any of the previous categories. A
detailed list with all the output URLs can be found in [15].

Discussion. The most important issue is that, as expected, the original PageRank
algorithm provides top results on several topics, even though the searcher is almost al-
ways interested in only a specific one. This behavior is understandable, as the algorithm
cannot disambiguate results based on user preferences.

The PPR algorithm performs only slightly better in this experiment (the total num-
ber of possibly relevant URLs is 34, whereas for PageRank it is 28), mostly because
the input sets were too sparse and qualitatively not very good. This might be improved
by adding additional top PageRank pages to the preference set, but we did not use this
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approach, as it would have definitely damaged the personalization aspect (remember
that top PageRank pages can be on any topic).

Finally, we see significant improvements when using PROS. The number of relevant
pages is much higher than for the other two algorithms. However, we still got some bad
output URLs (e.g. for the search keyword ”building”). We think this happened because
of the general profile of our tester. Other tests performed with more focused testers (i.e.
with a profile on exclusively one topic, such as ”architecture”) provided even better
results, but we consider the experiment presented in this paper to be the closest to a
real-life situation.

As we know from [8], pages from the preference set may have different importance.
In our tests, all pages had the same weight, that is1

|PS| , wherePS is the preference set.
Let us denote byB the set of bookmarks andS the set of user’s most surfed pages. In
this case, we can give for example23∗|B| importance to bookmarks and1

3∗|S| to user’s
most surfed pages. We think this approach (or a more complex one which automatically
gives an importance value to each of the most surfed pages, depending on the amount of
surfing time or revisits) would provide even more accurate ranks. Further experiments
are needed to define the correct biasing of these pages.

Generally, our experiments allow us to conclude that PROS increases the ranks of
pages similar to user’s bookmarks, as well as those that are most likely to be considered
interesting by the user (and thus the granularity of relevant results when performing a
Web search). If the tester uses the proxy server for longer periods, the accuracy of the
latter set is proportionately bigger (i.e. the size of the ”most surfed pages” set is bigger,
and therefore the rankings are more accurate).

5 Other Web Search Systems

Research on Web searching usually focused on algorithms, as they comprise the most
important part of such an engine. However, these algorithms are not always straight-
forward to integrate into a search engine and attention must also be paid to the user -
search engine interaction. [12] for example aims at satisfying all types of users (either
experienced, or novice) by translating the search goal into good query keywords. Al-
though search goals must be manually disambigued (e.g. solve a problem, find people
who, etc.), the system allows users to type queries in natural language and produces the
search keywords automatically using an inference engine.

[11] is somehow similar to PROS in the sense that user profiles are built automat-
ically and Web pages are recommended to users based on personalization approaches.
However, its contributions are orthogonal to ours: surfers are guided towards rele-
vant pages while they are browsing judging on the pages they have previously visited,
whereas we focus on integrating such personalization into page ranks used by a search
engine. [16] presents a new system for computing Web page ranks in a distributed fash-
ion, which could be nicely extended by our PROS approach.

Another interesting approach is described in [1], which adds personalization to the
JobFinder [9] search engine. It uses profile jobs and Information Retrieval operators to
classify retrieved jobs as relevant or irrelevant.
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6 Conclusions and Further Work

We presented the design and implementation of a personal ranking platform (PROS),
providing personalized ranking of Web pages based on user preferencees, while au-
tomating the input generation process for the PPR algorithm [8]. To achieve this, we
use user bookmarks as well as a record about the user’s surfing behavior (gained with
a proxy), which are then extended using our new HubFinder algorithm with HubRank
scores as trimming criterion. HubRank score is based on PageRank but additionally
takes hub quality of pages into account.

We are currently extending our tests towards more users and different environments
in order to get in depth evaluations of our platform. Furthermore, we are investigating
the additional inclusion of collaborative filtering algorithms to PROS, which would
allow us to also use personalize ranking based on groups of similar users instead of
single users, to further increase the input set available for the personalization algorithm.
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